"SEMANA 5"


DEFORMACION DE LA CORTEZA TERRESTRE Y LOS SISMOS

Mecánica de la deformación de rocas

Como se deforman las Rocas
Cuando las rocas son sometidas a esfuerzos que su propia resistencia, empiezan a deformarse,
normalmente plegándose, fluyendo o fracturándose (Figura GEOEST-01) Es fácil hacerse una idea de cómo se quiebran las rocas porque normalmente pensamos en ellas como algo quebradizo. Pero ¿cómo pueden doblarse la, grandes unidades rocosas en pliegues complicados sin romperse durante el proceso? Para responder a esta pregunta, los geólogos estructurales realizaron experimentos de laboratorio en los que las rocas fueron sometidas a esfuerzos diferenciales bajo condiciones que simulaban las existentes a diversas profundidades debajo de la corteza (Figura GEOEST-04).
Aunque cada tipo de roca se deforma de una manera algo diferente, a partir de esos experimentos se determinaron las características generales de la deformación de las rocas. Los geólogos descubrieron que. cuando se aplica gradualmente ''n esfuerzo, las rocas responden primerro deformándose elásticamente. Los cambios resultantes
de la deformación elástica son recuperables: es decir, igual que ocurre con una cinta de goma. la roca volverá prácticamente a su tamaño y forma originales cuando cese el esfuerzo. (Como veremos en el siguiente capítulo, la energía para la mayoría de los terremotos procede de la liberación de la energía elástica alacenada cuando una roca vuelve a su forma original.)
Una vez sobrepasado el límite elástico (resistencia) de una roca, ésta fluye (deformación dúctil) o se fractura (deformación frágil). Los factores que influyen en la resistencia de una roca y, por tanto, en cómo esta se va a deformar son la temperatura, la presión de confinamiento, el tipo de roca, la disponibilidad de fluidos y el tiempo.
Figura GEOEST-03 Estratos sedimentarios deformados que afloraron al hacer la carretera de Palmdale, Californ¡a. Además del plegamiento obvio, los estrastos claros están desplazados a lo largo de una falla localizada en el lado derecho de la fotografía. (Foto de E. J. Tarbuck.)

Temperatura y presión da confinamiento Las rocas próxima a la superficie, donde las temperaturas y las presiones de confinamiento son bajas, tienden a comportarse como un sólido frágil y se fracturan cuando se supera su resistencia.. Este tipo de deformación se llama deformación Frágil, De nuestra experiencia cotidiana, sabemos que los objetos de vidrio, los lápices de madera, las bandejas de porcelana e incluso nuestros huesos exhiben fracturas frágil una vez se supera su resistencia, Por el contrario, en la profundidad, donde las temperaturas y las presiones de confinamiento son elevadas. las rocas exhiben un comportamiento dúctil. La deformación dúctil es un tipo de flujo en estado solido que produce un cambio en el tamaño y la forma de un objeto sin fracturarlo. Los objetos normales que muestran un comportamiento dúctil son la arcilla de modelar, la cera de las abejas, el caramelo y la mayoría de los metales. Por ejemplo, una moneda de cobre colocada en el rail de una vía se aplanará y deformará (sin romperse) debido a la fuerza aplicada por un tren que pase por encima. La deformación dúctil de una roca -fuertemente ayudada por una temperatura y una presión de confinamiento elevadas- es algo parecida a la deformación de una moneda aplanada por un tren.Una manera mediante la cual se produce este tipo de flujo en estado sólido en el interior de una roca es mediante el deslizamiento gradual y la recristalización a lo largo de planos de fragilidad en el interior de la red cristalina de los granos minerales (véase Figura MET-05B). Esta forma microscópica de flujo gradual en estado sólido implica el deslizamiento que altera la red cristalina y la inmediata recristalización que repara la estructura, Las rocas que muestran signos de flujo dúctil normalmente se deformaron a una gran profundidad y exhiben pliegues que dan la impresión de que la resistencia de la roca era parecida a la de la masilla blanda.

Tipo de Roca Además del ambiente físico, la composición mineral y la textura de las rocas influye mucho en cómo
éstas se van a deformar. Por ejemplo, las rocas cristalinas compuestas por minerales con enlaces moleculares internos fuertes tienden a fracturarse. Por el contrario, las rocas sedimentarias débilmente cementadas o las rocas metamórficas que contienen zonas de debilidad como la foliación, son más susceptibles de experimentar deformación dúctil. Entre las rocas débiles y por tanto, que más probablemente se comporten de una manera dúctil cuando se someten a un esfuerzo diferencial, se cuentan la halita, el yeso y las lutitas, mientras que la caliza, el esquisto y el mármol tienen una resistencia intermedia. De hecho, la halita es tan débil que se deforma bajo pequeñas cantidades de esfuerzo diferencial y asciende en forma de columnas a través de los estratos de sedimentos que se extienden por el golfo de México y sus alrededores. Quizás el sólido más débil que existe en la naturaleza y que exhibe flujo dúctil a gran escala es el hielo glacial. Por comparación, el granito y el basalto son resistentes y Frágiles. En un entorno próúmo a la superficie, las rocas frágiles se fracturarán cuando sean sometidas a fuerzas que excedan su resistencia. Es importante observar, sin embargo, que la presencia de cantidades pequeñas de agua en las rocas favorece su deformación dúctil.
Figura GEOEST-04 Cilindro de mármol deformado en el laboratorio mediante la aplicación de miles de kilogramos de peso desde arriba. Cada muestra se deformó en un entorno que dupl¡caba la presión de confinamiento hallada a distintas profundidades. Obsérvese que cuando la presión de confinamiento era baja, la muest¡a se deformó por fractura frágil, mientras que cuando la presión de confinamiento era elevada, muestra se deformó plásticamente. (Foto cortesía de M. S. Patterson, Australian National University.)
Tiempo. Un factor clave que los investigadores son incapaces de duplicar en el leboratorjo es cómo las rocas responden a pequeños esfuerzos aplicados durante largos intervalos de tiempo geológica. Sin embargo, en escenarios
cotidianos pueden observarse los efectos del tiempo en la deformación. Por ejemplo, se sabe que los bancos de mármol se hunden por su propio peso después de un período de unos cien años aproximadamente y que las estanterías de madera pueden combarse después de cargarlas de libros durante un período relativamente corto de tiempo. En la
naturaleza, fuerzas pequeñas aplicadas durante largos períodos desempeñan seguramente un papel importante en la deformación de las rocas. Fuerzas incapaces de deformar inicialmente una roca pueden hacer que la roca fluidez
sj el esfuerzo se mantiene durante un período prolongado de tiempo.
Es importante destacar que los procesos por los que las rocas se deforman ocurren a lo largo de un continuo que se extiende entre la fractura frágil pura en un extremo al flujo dúctil (viscoso) en el otro. No hay límites marcados entre los diferentes tipos de deformación. También necesitamos recordar que, en general, los elegantes pliegues y los modelos de flujo que observamos en las rocas deformadas se alcanzan en general por el efecto combinado de la distorsión, el deslizamiento y la rotación de los granos individuales que componen una roca, Además, estadistorsión y la reorganización de los granos minerales tienen lugar en la roca que es esencialmente sólida.


Diastrofismo

En la corteza terrestre se registran diversidad de movimientos. Cuando estos ocurren en partes internas y causan deformaciones en las rocas, se presenta el fenómeno del diastrofismo.

Dependiendo de la dirección del movimiento, el diastrofismo de divide en:

·       Movimientos epirogénicos: Se realizan en sentido vertical, producen fracturas en las rocas y abarcan grandes extensiones. Se trata de movimientos lentos de levantamiento y hundimiento de enormes porciones de corteza terrestre. Su efecto se aprecia en el cambio de las líneas de la costa y en la transformación del aspecto de los continentes. De ellos se derivan las siguientes deformaciones:
ü  Fracturas: Son grietas en la roca sólida.
ü  Fisuras: Es una fractura mayor por donde puede ascender lava.
ü  Fallas: Se originan cuando hay un desplazamiento apreciable y posterior a la formación de fracturas y fisuras, es decir, cuando un bloque de capas rocosas se ve sometido a una fuerza tectónica que lo divide en dos partes: una superior y una inferior.
Dependiendo de la dirección que tome el desplazamiento de los bloques, las fallas pueden ser verticales u horizontales. Las primeras de crean cuando un bloque se levanta y otro se hunde; por el contrario, la falla es horizontal si alguno de los bloques se mueve hacia la derecha o hacia la izquierda, o si los bloques de movimiento se desplazan lateralmente a lo largo del plano de la falla.


·       Movimientos orogénicos: Cuando el recorrido se realiza en sentido horizontal, de compresión y distensión, el desplazamiento de mineral es considerable por lo que las rocas se deforman dando origen a:
ü  Ondulamientos: Son a gran escala. Se deben al arqueamiento o deformación de las capas rocosas más flexibles de la corteza terrestre y hacen que el relieve tome una forma elevada y arqueada.


ü  Plegamientos: Son similares a los ondulamientos, pero el arco que se forma es mayor. Se puede hablar de las siguientes partes de un plegamiento:
Ø  Anticlinal: Zona elevada del pliegue convexo hacia arriba.
Ø  Sinclinal: Área hundida o convexa del plegamiento.
Ø  Monoclinal: Porción del plegamiento que presenta una inclinación de las capas rocosas en un mismo sentido.

Movimientos Sísmicos
 
   Un movimiento sísmico es un movimiento vibratorio producido por la pérdida de estabilidad de masas de corteza. Cuando el movimiento llega a la superficie y se propaga por ésta le llamamos terremoto.
Estas pérdidas de estabilidad se asocian, generalmente, a los límites de placas tectónicas.

  Ondas sísmicas
El movimiento sísmico se propaga concéntricamente y de forma tridimensional a partir de un punto en la Corteza profunda o Manto superficial (en general, en la Litosfera) en el que se pierde el equilibrio de masas. A este punto se le denomina hipocentro.
Cuando las ondas procedentes del hipocentro llegan a la superficie terrestre se convierten en bidimensionales y se propagan en forma concéntrica a partir del primer punto de contacto con ella. Este punto llama epicentro. Según nos alejamos del hipocentro se produce la atenuación de la onda sísmica.
Las ondas sísmicas son similares a las ondas sonoras y, según sus características de propagación, las clasificamos en:
Ondas "p" o primarias: llamadas así por ser las más rápidas y, por tanto, las primeras que se registran en los sismógrafos. Son ondas de tipo longitudinal, es decir, las partículas rocosas vibran en la dirección de avance de la onda. Se producen a partir del hipocentro y se propagan por medios sólidos y líquidos en las tres direcciones del espacio.
Ondas "s" o secundarias: algo más lentas. Son ondas de tipo transversal, es decir, la vibración de las partículas es perpendicular al avance de la onda. También se producen a partir del hipocentro y se propagan en forma tridimensional, pero únicamente a través de medios sólidos.



    Ondas "L" o largas: se propagan sólo por la superficie, por lo que también se les llama ondas superficiales. Se propagan a partir del epicentro. Éstas son las verdaderas causantes de los terremotos.
 
Las escalas sísmicas

La intensidad de los terremotos se refiere a la magnitud del movimiento sísmico y, por tanto, está en relación con la energía liberada por la Tierra en dicho movimiento.

 Índice de sismicidad  Se refiere a la susceptibilidad de una región a sufrir terremotos. Se suele medir  por el número de sacudidas sísmicas habidas en un año en un territorio de 100  km2.
Son zonas con índice de sismicidad alto las comprendidas en los dos cinturones activos. Están localizadas en los dos cinturones  activos (ver tema anterior); es decir, las costas pacíficas, el Mediterráneo oriental,  etc.
En España no hay regiones con índice alto, sólo con índice medio. Dentro de ellas están la Región Bética (Granada - Almería), Galicia y el sur de los Pirineos (Valle del Ebro y costa oriental catalana).


Las ondas sísmicas se registran en aparatos denominados sismógrafos, En ellos quedan registradas las ondas correspondientes a los tres tipo de ondas. Las líneas que describen estas ondas nos aportan la información sobre la intensidad del terremoto.
 
Las dos escalas sísmicas más utilizadas son la de Mercalli y la de Ritcher. Aunque la primera ha sido muy utilizada, en la actualidad va perdiendo importancia en favor de la segunda.
Escala de Mercalli: es una escala subjetiva y mide la intensidad de un terremoto. Tiene 12 grados establecidos en función de las percepciones y de los daños provocados por el terremoto a los bienes humanos.
ESCALA DE MERCALLI MODIFICADA:
Grado Intensidad Efectos
I
Instrumental
Registrado sólo por sismógrafos.
II
Muy débil
Percibido por algunas personas en pisos altos.
III
Ligero
Perceptible en interiores, los objetos suspendidos se balancean, similar al paso de un camión.
IV
Moderado
Percibido por la mayoría de las personas en la calle y en interiores, oscilación de objetos colgantes, ventanas y cristalería crujen.
V
Algo fuerte
Despiertan las personas dormidas, algunos objetos caen, cuadros, puertas y contraventanas se balancean.
VI
Fuerte
Los muebles se mueven, los cuadros se caen, los platos y la cristalería se rompen, las campanas suenan solas y algunas chimeneas se derrumban, los tabiques se resquebrajan.
VII
Muy fuerte
Es difícil mantenerse en pie, se caen los aleros de los tejados, tejas chimeneas y cornisas de edificios, se forman olas en los estanques. Suenan todas las campanas.
VIII
Destructivo
Caen algunas estatuas y muros, torres y edificios son deteriorados. Aparecen grietas en suelos húmedos y en taludes abruptos. Cambian los niveles de los acuíferos.
IX
Ruinoso
Pánico general, las casas comienzan a caer, grietas en el suelo, raíles de tren deformados, puentes y conducciones subterráneas rotas.
X
Desastroso
Pánico general. Muchos edificios destruidos, graves daños en presas. Desprendimientos de tierras, desbordamientos de ríos, canales, lagos, etc.
XI
Muy desastroso
Pánico general. Pocos edificios en pie, raíles muy deformados, conducciones subterráneas inservibles. Aparecen fallas en el terreno de salto apreciable.
XII
Catastrófico
Destrucción total, los objetos son lanzados al aire, desplazamiento de grandes masas rocosas. La topografía queda cambiada.

Escala de Ritcher: es una escala matemática y, por tanto objetiva. Mide la magnitud del terremoto y está relacionada con la energía liberada en el sismo. Teóricamente no tiene límite, pero un 9 en esta escala equivaldría a un Grado XII de Mercalli, es decir "destrucción total". Se basa en la amplitud de la onda registrada en un sismógrafo situado a menos de 100 km del epicentro.

 Determinación del epicentro y de la magnitud.  La determinación del epicentro del terremoto requiere de la triangulación de los datos de tres estaciones símicas que lo hayan registrado.

La determinación de la magnitud o escala Richter se realiza combinando los amplitud de la onda medida en el sismograma y la distancia al epicentro de la estación que registra el terremoto. Si quieres aprender a realizar estos cálculos te animamos a consultar el siguiente enlace a una actividad externa:


Estructura interna de la Tierra

El interior de la Tierra está compuesto por tres capas diferenciadas: corteza, manto (superior e inferior) y núcleo.

Estructura interna de la Tierra
 


No hay comentarios:

Publicar un comentario